SOLUTION OF REVERSE AND INVERSE PROBLEMS
OF THERMAL PROCESSES IN METALLURGY BY
ELECTRICAL SIMULATION

L. A. Kozdoba and V. I. Legenchuk UDC 536.42+681.142.234

Methods of electrical simulation of problems of solidification within a temperature range are
presented. Unique features in solutions of reverse and inverse problems are noted. Certain
thermophysical properties of the crystallizing "steel ingot —gray iron mold" system are ob-
tained.

Methods and examples of electrical simulation on ohmic-resistance grids (R-grids) of temperature
fields in molds and ingots during crystallization with the heat of crystallization (L) released at constant
temperature are given in [1, 2]. Solution of the solidification (melting) problem with the inner heat L re-
leased in the liguidus —solidus temperature range (AT¢r = Tijq — Tgol # 0) is of considerable interest.

The electric analogy method [1, 2] is also applicable in the latter case not only for solving direct
problems of defining the temperature field and the law governing translation of phase fronts under given
boundary conditions, but also for solving reverse and inverse problems. In a reverse problem we derive
boundary conditions from a known temperature field, while in the inverse problem, thermophysical prop-
erties of materials, including L, are determined.

Let us investigate by electrical simulation the following mathematical model of the solidification of an
ingot in a mold:

d (A aT) aT
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— —cp— =0, 1
p™ Cpat-l-w 0 (1

For simplicity, let us consider a one-dimensional problem and relate the equations to a rectangular
system of coordinates. Egquation (1) definesthe nonsteady process of heat conduction in the mold, in the solid
and liquid phases, and in the two-phase region of the ingot. In direct problems the thermophysical param-
eters A, ¢, p, and w are given functions of coordinates and temperature. Neither in the mold nor in the solid
and liquid phase does w have any effect, i.e., we neglect internal heats, except the heat of solidification L
released in the two-phase region.

Boundary conditions which together with (1) constitute the mathematical model are of the following
form (see Fig. 1).

a) Boundary conditions of the IHrd kind are specified for the external surface of the mold, where
aem takes into account convection and radiation. '

b) Boundary conditions of the Illrd kind are specified for the inner surface of the mold and the outer
surface of the ingot, with Qg taking into account the thermal resistance (Rg =1/ @g) in the gap. The tem~
perature of the [external] medium is represented for the ingot by the temperature of the mold inner surface,
and for the mold by that of the outer surface of the ingot.

c) Boundary conditions of the IVth kind are specified for the interface of the solid and liquid phases
(in the two-phase zone), i.e., temperatures and heat fluxes at related phase fronts are equal.

d) The problem is symmetric, i.e., at the ingot center line 8T/0x = 0.
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Fig. 1. Diagram of the heat problem (a) and of the resistance grid (b). Resistances
R+ and Ry at the input to the nodes are not shown.

Fig. 2. Dependence of the heat-transfer coefficient (1 /Rg in W/m? - deg) of the gap
on solidification time 7 (min) derived by the solution of the reverse problem.

The initial condition presupposes a given temperature distribution in the ingot and in the mold at the
reference instant of time. The latter makes it possible to specify and to take into account in the electrical
analog the superheating of the molten metal.

This analog admits of the assumption of heat transfer by conduction in the liquid-phase and in the two-
phase zones. Heat transfer by forced or natural convection in the liquid and in the two-phase zones can be
taken into account by the introduction of an effective (or equivalent) thermal-conductivity coefficient.

Since a sufficiently detailed description of the computation method for parameters of the R—grid elec-
trical analogs or of combined analogs (R-grid plus conductive paper) is given in (2, 4], we pause to con-
sider only the features of simulating the internal heat released in the AT, temperature range.

In considering solidification (melting) at constant temperature T it was assumed in [1, 2, 5] that

cre

w0 2
8t

The finite -difference equation approximating (1) is of the form

AlTl,n—TO,n _}_;\‘2 T2,n—T0,n
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We write the second and third terms of Eq. (3) as
L Ton1—To
¢ i o (4
( + To,n-x—To,n ) o St

When ATgy = 0, the expression in parentheses is called the effective specific heat capacity ceff, and L
/(To,n—1 — Ty,n) the spectral heat of solidification (Lgl) when L is released according to a linear law in the
Ty,n—1 — Ty,n range.

Although we are now considering the case of AT¢y = 0, the derived characteristics ceff and Lgh re-
late to ATy # 0. Obviously, the method of simulation used in [1, 2] assumes that the release of L occurs
in the temperature range Tyn—; — Ty,n. During solidification and melting To,n—; = Ter, while Ty p during
solidification becomes lower, and during melting higher,than Tey.

The smaller Ty —y — Ty n, which is related to the shortening of the time interval 67, the more com-
pletely satisfied is the condition of phase transition at ATeyr = 0 and the higher the overall accuracy of the
solution [2].

Thus the method of [1, 2] assumes that L is released within a range of temperatures, while, in fact,
it is released at ATgy = 0.

If it is assumed that L is released in the range ATqy = Tyjq — Tgol # 0, Eq. (1) may then be written as

s (x 92) o 9T L OO (5)
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Fig. 3. Dependence of the spectral heat of crystallization kJ /kg -deg) on tem-
perature (°K) in the interval AT, . of solidification and on the position of the
two-phase zone, derived by solving the inverse problem. Curves 1, 2, 3, 4,
and 5 relate to Lgp at points lying, respectively, at 48, 64, 100, and 260 mm
from the ingot surface. Curve 6 shows the dependence of the mean Lg}, on tem-
perature.

Fig. 4. Variation of the total heat of crystallization (kJ /kg) and of the effec-
tive thermal -conductivity coefficient (W /m -deg) of the liquid phase across the
ingot section [ (mm): 1) total heat of crystallization; 2, 3, 4, and 5) A7 at in-
stants of time 15, 25, 45, and 70 min, respectively; 6) variation of maximum A;
with time across the ingot section.
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After suitable transformation, as in [2], we obtain
TR,
Tt Lgoty +hy)’

R; (8)
for the one-dimensional problem and, respectively,

Ry .
e Lo (b 4 Ba) (Bs + h)

R — STR,
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R:

for the two-, and three-dimensional problems. The remaining grid parameters are obtained as in [2].

For electrical simulation it is necessary to know the function Lgp (T) which makes it possible to in-
troduce corrections to R+ in the range Tliq — Tgol; and this permits us to take into account at each step of
solution that Lgy, is a function of temperature.

If

L
=
lig = “sol
is assumed, the mean integral spectral heat of solidification is, by the same token, defined and it is constant

throughout the an —Tgq range.

Thus the first variant of the analog takes into consideration L in cqff, when the problem is solved in the
the absence of heat sources, but with copp entering Rr.
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The second variant of the analog of Eq. (5) is the one in which
oL aT

aT ox  © (10)

i.e., the last term of (5) is considered to be an internal heat source of power w.

When simulating the transition through the Tyjq —Tgo] range, w must be calculated at each step of
solution by the expression

0,12

-1
| LgdT
T
W= o . (11)
e ot
The limits of integration in the numerator of (11) relate to solidification. In the case of melting, the
lower and upper limits are transposed.

The resistances Ry, through which flow the currents simulating heat sources (sinks) of power w are
determined by relationships given, for example, in [2].

If a node of the R-grid is supplied directly by current, the latter is defined (in a three-dimensional
problem) by the expression

Iw = w(hl -+ hg) (hs + ha) (hs + hs)/kRN- (12)

Experiment has shown that the amount of work involved in the solution is smaller, if the first variant
of the analog with cepf is used. In the second case it becomes necessary to make a second approximation to
obtain a more accurate definition of the Ty appearing in w as the integration limit and in Ry as a separate
term.

The first variant of direct-problem simulation was used to solve the reverse and inverse problems.
The process was repeated at each step of the solution until coincidence of the experimental and electrical
analog temperature fields was reached. This was achieved by suitably varying resistances Rg, Ry, Ra,
R, and Ry, or currents Iy which contain the unknown magnitudes.

Temperature distributions in the mold, in the solid and liquid phases, and in the two-phase zone, needed
for solving the reverse and the inverse problems, were obtained by thermocouple measurement of the tem-
perature of a rectangular ingot of grade 17 MnSi killed steel weighing 13 tons, whose cross section at mid-
height was 1150 X 720 mm.

Temperature measurements were carried out simultaneously inthree cross sections. No temperature
gradients were observed over a considerable part of the ingot height, which made possible the solution of
the reverse and inverse problems as one-dimensional in first approximation.

A diagram of the heat problem andthe corresponding R-grid is shown in Fig. 1 in which the small
circles denote nodes of the R-grid and the crosses indicate those nodes whose coordinates coincide with the
coordinates of thermocouple ends.

Parameters Tep,, ®em> Cm: Pm» Cs» Ps> Tgol: Tligs €I, and py appearing in Fig. 1 were assumed to be
given. The thermal-conductivity coefficient of the two-phase zone was assumed to be equal to Ag and its
volumetric specific heat equal to ¢y7 . This i due to cyg = cyz and Ag = A7, since in the liquid phase A
is the effective A mentioned above.

The sought unknowns were tggp, Ligh, Ay and Az,

If the principle of local effect [6] is taken into consideration, it becomes possibly to try to obtain at
each stage of solution all of the unknown magnitudes with the aid of one model.

In our case the principle of local effect manifests itself, for example, by the fact that a change in the
thermal resistance l/ozg of the gap affects mainly the temperature in the region of the inner surface of the
mold and of the solid-phase outer surface, or by the importance in the determination of Ay, of the cor-
respondence with experimentally defined temperatures in the mold and in the region of the ingot surface,
and so on.

In the iteration process which this method of solution of reverse and inverse problems involves, a
thorough analysis of results of each iteration, comparison of obtained data with their possible limit values,
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consideration of the properties of curves representing the variation of unknown magnitudes, etc., are ob-
viously important.

The results of solution of the reverse problem — determination of the coefficient of heat transfer in the
the gap —are shown in Fig. 2. The comparison of data derived by electrical simulation with those obtained
in experiments on a 12-ton ingot [7] shows a very satisfactory qualitative and quantitative correlation.

The dependence of Lgy on temperature is shown in Fig. 3.

It became clear that the law of release of Lgh does not only depend on temperature, but also on the
position of the front of the phases. The dependence of the mean Lgp on temperature is also shown in Fig. 3,
while Fig. 4 shows the dependence of total L, as defined in [7], on the position of the two-phase zone.

It should be noted that integration with respect to T along curves 1, 2, and 3 yields like values of L,
and along curves 4 and 5 it yields values which are lower than those obtained along curves 1, 2, and 3.
This shows that the quantity of heat released in the two-phase zone diminishes with diminishing distance
from the ingot center.

This may be explained by the sinking of the solid phase from higher layers, i.e., in a given section
the quantity of the liquid phase during solidification diminishes not only owing to solidification but, also,
because of an intake of solid phase from upper layers — in other words, owing to crystallization of upper
layers and sinking from upper layers, and not from the crystallization of liquid metal in that section.

Hence in solving direct problems it is necessary to use curves similar to those in Fig. 3, where the
described effect is taken into account.

If an actual heat problem were one-dimensional, the pattern of curves 4 and 5 (see Fig. 3) would be
the same as that of curves 1, 2, and 3, and it would appear that L would have remained unchanged during
solidification.

Hence a sufficient justification for treating this problem as one-dimensional is given not only by
the small temperature gradients in the vertical direction but, also, by the law Lgh(T, x) which takes into
account the variation of L in the motion of the two-phase zone.

A check solution of a direct two-dimensional problem for values of Lgh quoted above and a compari-
son of experimental data with those of electrical analog computation confirm this assumption.

The dependence of Ay, on T obtained in the solution of an inverse problem is given in Table 1. It will
be seen that in the interval of 923-973°K Ay changes abruptly. This can be explained by changes in the
structure of the grayiron at these temperatures. The pattern of variation of Ay in the 293-873°K range con-
forms to published data on the variation of A of pig irons with temperature.

A check has shown the necessity of taking Ay, (T) into account only when the temperature field of the
mold itself is to be determined with sufficient accuracy. In investigations of the temperature field of an
ingot and for determining the pattern of motion of the two-phase zone Ay, can be taken at its mean value

given by the relationship
T

f A T)dT
}vm av= —DT—T' - (13)
21

The mean integral A, 5y can be derived from the tabulated data.

Curves showing the dependence of the effective coefficient of thermal conductivity in the liquid phase
on the position of the two-phase zone, obtained in the course of solving an inverse problem, are given in
Fig. 4. It will be noted that all curves (only a few of the obtained curves are shown in Fig. 4) have a charac-
teristic maximum approximately midway between the liquidus line and the ingot center line. The curve of

TABLE 1. The Dependence of the A of the Mold Material
on Temperature

1

T,°K 293 373 473 573 672 773 873 953 ’ 1023 1073

|
m } 53,6

t
52,5 51,5 50,5 49 l 48 46,5;45,5‘ 34 | 24,5
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maximum A7 has a characteristic minimum, i.e., A first increases and then decreases with the translation
of the two-phase zone.

These peculiarities of the variation in A7may be explained by convection in the liquid phase, resulting
from the characteristic temperature drop across that phase and by the translation of this drop during soli-
dification of the ingot.

Thus, the electrical model —the R~grid —used in conjunction with the method proposed by Libmann
[2] makes possible the solution of direct, reverse, and inverse problems of solidification (melting) with
inner heat release either at constant temperature or in a range of temperatures. Solutions of reverse and
inverse problems provide fairly accurate means for selecting optimum conditions for casting and for de-
signing molds.

NOTATION
A is the coefficient of thermal conductivity;
c is the specific heat;
p is the density;
w is the volumetric specific power of internal heat sources;
Cy is the volumetric specific heat (cp);
o is the heat-transfer coefficient;
6T is the time interval;
h is a space interval;
Rr, Ry are resistances of the R-grid simulating, respectively, heat capacities and w;
K is the conversion factor from temperature to voltage;
Ry is the conversion factor from thermal to electric resistance;
1 is the electric current.

Subscripts

em denotes external medium;

m denotes mold;
s denotes solid phase;
l denotes liquid phase;

g denotes gap;

sh denotes spectral heat of solidification;
er denotes crystallization;

sol denotes solidus;

lig  denotes liquidus;

sl denotes solid liquid (two~phase);

av denotes mean (average).
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