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Methods of e lect r ical  simulation of problems of solidification within a temperature  range are  
presented.  Unique features in solutions of r eve r se  and inverse problems are noted. Certain 
thermophysical  proper t ies  of the crysta l l iz ing "steel i n g o t - g r a y  iron mold"  sys tem are ob-  
tained. 

Methods and examples of e lec t r ica l  simulation on ohmic- res i s t ance  gr ids  (R-grids) of tempera ture  
fields in molds and ingots during crysta l l izat ion with the heat of crys ta l l iza t ion (L) re leased at constant 
t empera tu re  are  given in [1, 2]. Solution of the solidification (melting) problem with the inner heat L r e -  
leased in the liquidus - so l idus  tempera ture  range (ATcr = Tli q - Tso 1 ~ 0) is of considerable interest .  

The e lec t r ic  analogy method [1, 2] is also applicable in the lat ter  case not only for solving direct  
p roblems of defining the tempera ture  field and the law governing translat ion of phase fronts under given 
boundary conditions, but also for solving r eve r s e  and inverse p rob lems .  In a r eve r se  problem we derive 
boundary conditions from a known tempera ture  field, while in the inverse problem,  thermophysieal  p r o p -  
e r t ies  of mate r ia l s ,  including L, are determined.  

Let us investigate by e lec t r ica l  simulation the following mathematical  model of the solidification of an 
ingot in a mold: 

0 1~ OT \ OT [ (17 

For  simplici ty,  let us consider  a one-dimensional  problem and relate the equations to a rec tangular  
sys tem of coordinates .  Equation (1) defines the nons teadyprocess  of heat conduction in the mold, in the solid 
and liquid phases ,  and in the two-phase region of the ingot. In direct  problems the thermophysical  p a r a m -  
e t e r s  X, c, p, and w are given functions of coordinates and tempera ture .  Neither  in the mold nor  in the solid 
and liquid phase does w have any effect,  i.e.,  we neglect internal heats ,  except the heat of solidification L 
re leased  in the two-phase region.  

Boundary conditions which together with (1) constitute the mathematical  model are  of the following 
form (see Fig. 1). 

a) Boundary conditions of the IIIrd kind are  specified for the external  surface of the mold, where 
O~em takes into account convection and radiation. 

b) Boundary conditions of the IIIrd kind are  specified for the inner surface of the mold and the outer 
surface  of the ingot, with a g  taking into account the thermal  res is tance  (Rg = 1 / a g )  in the gap. The t em-  
pera tu re  of the [external] medium is represented  for the ingot by the tempera ture  of the mold inner surface,  
and for the mold by that of the outer surface of the ingot. 

c) Boundary conditions of the IVth kind are  specified for the interface of the solid and liquid phases 
(in the two-phase zone), i .e. ,  t empera tu res  and heat fluxes at related phase fronts are equal. 

d) The problem is symmet r i c ,  i .e. ,  at the ingot center  line 8T/8x = 0. 
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F i g .  1. D i a g r a m  of  the  hea t  p r o b l e m  (a) and of the  r e s i s t a n c e  g r i d  (b). R e s i s t a n c e s  
R~- and R w a t  the  input  to the  nodes  a r e  not shown.  

F i g .  2. Dependence  of the  h e a t - t r a n s f e r  coe f f i c i en t  ( 1 / R g  in W / m  2 .deg)  of the  gap  
on s o l i d i f i c a t i o n  t ime  T (min) d e r i v e d  by the s o l u t i o n  of  the  r e v e r s e  p r o b l e m .  

p h a s e  
t aken  

t r i c a l  
s i d e r  

In c o n s i d e r i n g  s o l i d i f i c a t i o n  ( m e l t i n g ) a t c o n s t a n t  t e m p e r a t u r e  T c r ,  i t  was  a s s u m e d  in [1, 2, 5] tha t  

Lp 

6~ 

The in i t i a l  cond i t ion  p r e s u p p o s e s  a g iven  t e m p e r a t u r e  d i s t r i b u t i o n  in the ingot  and in the m o l d  a t  the 
r e f e r e n c e  ins t an t  of t i m e .  The  l a t t e r  m a k e s  it p o s s i b l e  to s p e c i f y  and to t ake  into accoun t  in the e l e c t r i c a l  
ana log  the s u p e r h e a t i n g  of the m o l t e n  m e t a l .  

Th is  ana log  a d m i t s  of the a s s u m p t i o n  of hea t  t r a n s f e r  by conduc t ion  in the l i q u i d - p h a s e  and in the t w o -  
z o n e s .  Hea t  t r a n s f e r  by f o r c e d  o r  n a t u r a l  c onve c t i on  in the l iqu id  and in  the t w o - p h a s e  zones  can  be 
into accoun t  by the i n t r o d u c t i o n  of an e f f ec t ive  (or equ iva len t )  t h e r m a l - c o n d u c t i v i t y  c oe f f i c i e n t .  

S ince  a s u f f i c i e n t l y  d e t a i l e d  d e s c r i p t i o n  of the c o m p u t a t i o n  m e t h o d  fo r  p a r a m e t e r s  of  the  R - g r i d  e l e c -  
ana logs  o r  of c o m b i n e d  a n a l o g s  ( R - g r i d  p lus  conduc t ive  p a p e r )  is  g iven  in [2, 4], we p a u s e  to c o n -  
only the f e a t u r e s  of s i m u l a t i n g  the i n t e r n a l  hea t  r e l e a s e d  in the A T c r  t e m p e r a t u r e  r a n g e .  

(2) 

The  f i n i t e - d i f f e r e n c e  equa t ion  a p p r o x i m a t i n g  (1) i s  of the f o r m  

~,lTl,n--To,r~ ~_;~ T~,,~--To,,~ 

2 hi h~ To,._i - -  To,,, L p 
h~ + h~ 4- c p 6T + ~ -  = O. (3) 

We w r i t e  the  s e c o n d  and t h i r d  t e r m s  of Eq.  (3) a s  

L ) To.._l - -  To,~ (4) 
c + To,,+_~ - -  To,~ P 6~ 

When  A T c r  ~ 0, the  e x p r e s s i o n  in p a r e n t h e s e s  is  c a l l e d  the e f f ec t ive  s p e c i f i c  hea t  c a p a c i t y  Cef f,  and L 
/ ( T 0 n - 1  - T0,n) the  s p e c t r a l  hea t  of s o l i d i f i c a t i o n  (Lsh) when L is  r e l e a s e d  a c c o r d i n g  to a l i n e a r  l aw in the 

T 0 , n -  1 - T0, n r a n g e .  

Al though  we a r e  now c o n s i d e r i n g  the c a s e  of A T c r  = 0, the  d e r i v e d  c h a r a c t e r i s t i c s  Cef f and  L s h  r e -  
l a t e  to A T c r  ~ 0. O b v i o u s l y ,  the  me thod  of s i m u l a t i o n  u sed  in [1, 2] a s s u m e s  tha t  the r e l e a s e  of  L o c c u r s  
in  the t e m p e r a t u r e  r a n g e  T 0 , n -  1 - T0,n. Dur ing  s o l i d i f i c a t i o n  and m e l t i n g  T 0 , n -  t = T c r ,  wh i l e  T0, n d u r i n g  
s o l i d i f i c a t i o n  b e c o m e s  l o w e r ,  and d u r i n g  m e l t i n g  h i g h e r ,  than T e r .  

The s m a l l e r  T 0 , n _  1 - T 0 , n , - w h i c h  i s  r e l a t e d  to the s h o r t e n i n g  of  the t i m e  i n t e r v a l  6T, the m o r e  c o m -  
p l e t e l y  s a t i s f i e d  is  the cond i t ion  of p h a s e  t r a n s i t i o n  a t  A T c r  = 0 and the h i g h e r  the  o v e r a l l  a c c u r a c y  of the  
so lu t i on  [2]. 

Thus the  m e t h o d  of [1, 2] a s s u m e s  that  L is  r e l e a s e d  wi th in  a r a n g e  of t e m p e r a t u r e s ,  wh i l e ,  in f ac t ,  
i t  i s  r e l e a s e d  a t  A T c r  = 0. 

If i t  i s  a s s u m e d  that  L i s  r e l e a s e d  in the  r a n g e  A T c r  = T l i  q - Tso  1 ~ 0, Eq .  (1) m a y  then  be w r i t t e n  a s  

0 [k  OT ~ OT OL OT 0 (5) 
ox \ + p o r  o+ 
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Fig. 3. Dependence of the spectral heat of crystallization (kJ/kg .deg) on tem- 
perature (OK) in the interval ATcr of solidification and on the position of the 
two-phase zone, derived by solving the inverse problem. Curves i, 2, 3, 4, 
and 5 relate to Lsh at points lying, respectively, at 48, 64, I00, and 260 mm 
from the ingot surface. Curve 6 shows the dependence of the mean Lsh on tem- 
perature. 

Fig. 4. Variation of the total heat of crystallization (kJ/kg) and of the effec- 
tive thermal-conductivity coefficient (W/m �9 deg) of the liquid phase across the 
ingot section I (mm): i) total heat of crystallization; 2, 3, 4, and 5) ~l at in- 
stants of time 15, 25, 45, and 70 rain, respectively; 6) variation of maximum k l 

with time across the ingot section. 

o o r = o  
Ox \ Ox / - -  p (c -l- Lsh) O---T- (6) 

We know that  

ri 8 OL 
L=  drl L h= 

OT 
rsol 

(7) 

A f t e r  sui table  t r a n s f o r m a t i o n ,  as  in [2], we obtain 

a~R~ 

(c + Ls~} P (a~ + a4 ' 

for the one-dimensional problem and, respectively,  

5~ R N 

R~ ----- (c -{- Lsh) p (h, + h~) (ha + h4) ; 

6x R N 
R~ = (c q- Lsh ) p (ht q- h~) (h3 q- h4) (h~ q- hG) " 

(8) 

(9) 

fo r  the two- ,  and t h r e e - d i m e n s i o n a l  p r o b l e m s .  The r ema in ing  g r id  p a r a m e t e r s  a re  obtained as  in [2]. 

Fo r  e l e c t r i c a l  s imula t ion  it is n e c e s s a r y  to know the funct ion Lsh(T  ) which m a k e s  it poss ib le  to in -  
t roduce  c o r r e c t i o n s  to R7 in the range  Tli q - Tso  1, and this p e r m i t s  us to take into accoun t  at  each  step of 
solut ion that  Lsh  is a funct ion of t e m p e r a t u r e .  

If  
L 

Lsh= 
Tli q - -  T s o l  - ' 

is assumed, the mean integral spectral heat of solidification is, by the same token, defined and it is constant 
throughout the Tli q - T s o  I range. 

Thus the first variant of the analog takes into consideration L in Cef f, when the problem is solved in the 
the absence of heat sources, but with eel f entering RT. 
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The second va r i an t  of the analog of Eq. (5) is  the one in which 

OL OT 
p - -  = w ,  (lO) 

OT O'r. 

i . e . ,  the l a s t  t e r m  of (5) is  cons ide red  to be an in terna l  heat  source  of power  w. 

When s imula t ing  the t r ans i t ion  through the Tli  q - Tso  1 range ,  w must  be ca lcu la ted  at each step of 
solut ion by the e x p r e s s i o n  

To,n-1 
~, LshdT 

r~ (11) w ~ p  ' 
6~ 

The l im i ts  of integration in the numerator of (11) relate to sol idi f icat ion. In the case of melt ing, the 
lower and upper l im i ts  are transposed. 

The resistances 1~  through which flow the currents simulating heat sources (sinks) of power w are 
determined by relationships given, for example, in [2]. 

If a node of the R - g r i d  is  suppl ied d i r ec t l y  by c u r r e n t ,  the l a t t e r  is  defined (in a t h r e e - d i m e n s i o n a l  
p rob lem)  by the e x p r e s s i o n  

I~ = w (hi -]- h~)(ha -t- h,O (h5 q- hn)/leR g. (12) 

Expe r imen t  has shown that the amount  of work involved in the solut ion is s m a l l e r ,  if the f i r s t  va r i an t  
of the analog with Cef f is  used .  In the second case  it becomes  n e c e s s a r y  to make a second approx imat ion  to 
obtain a more  accu ra t e  defini t ion of the T0, n appear ing  in w as  the in tegra t ion  l imi t  and in Rw as a s epa ra t e  
t e r m .  

The f i r s t  va r i an t  of d i r e c t - p r o b l e m  s imula t ion  was used to solve the r e v e r s e  and inve r se  p r o b l e m s .  
The p r o c e s s  was r epea ted  at  each  step of the solut ion until coincidence of the expe r imen ta l  and e l e c t r i c a l  
analog temperature fields was reached. This was achieved by suitably varying resistances R~, Rq, R X , 

Rr, and R w, or currents I w which contain the unknown magnitudes. 

Temperature distributions in the mold,in the solid and liquid phases, and in the two-phase zone, needed 

for solving the reverse and the inverse problems, were obtained by thermocouple measurement of the tem- 

perature of a rectangular ingot of grade 17 MnSi killed steel weighing 13 tons, whose cross section at mid- 

height was 1150 • 720 ram. 

Temperature measurements were carried out simultaneouslyinthree cross sections. No temperature 
gradients were observed over a considerable part of the ingot height, which made possible the solution of 
the reverse and inverse problems as one-dimensional in first approximation. 

A d i a g r a m  of the heat  p r o b l e m  andthe  co r respond ing  R - g r i d  is shown in F ig .  1 in which the sma l l  
c i r c l e s  denote nodes of the R - g r i d  and the c r o s s e s  indicate those nodes whose coord ina tes  coincide with the 
coord ina tes  of thermocouple  ends .  

P a r a m e t e r s  Tem,  O~em, Cm, Pm, Cs, Ps, Tsol ,  Tliq,  c/ ,  and Pl appear ing  in F ig .  1 were  a s sumed  to be 
given.  The t he rma l - conduc t iv i t y  coeff ic ient  of the two-phase  zone was a s s um e d  to be equal to k s and i ts  
vo lume t r i c  spec i f ic  heat  equal to Cv/.  This is  due to Cvs ~- Cv/and X s ~ X/, s ince in the liquid phase  X l 
is the effect ive X ment ioned above.  

The sought unknowns were  ne f  f, Lsh, X m,  and X l .  

If the p r inc ip le  of local  effect  [6] is taken into cons ide ra t ion ,  it becomes  pos s ib ly  to t ry  to obtain at  
each stage of solution al l  of the unknown magnitudes with the a id  of one mode l .  

In our case  the p r inc ip l e  of loca l  effect mani fes t s  i t se l f ,  for  example ,  by the fact  that a change in the 
t he rma l  r e s i s t a n c e  1 l a g  of the gap affects  mainly  the t e m p e r a t u r e  in the region  of the inner  su r face  of the 
mold and of the so l i d -phase  outer  s u r f a c e ,  o r  by the impor tance  in the de te rmina t ion  of k m  of the c o r -  
respondence  with expe r imen ta l l y  defined t e m p e r a t u r e s  in the mold and in the region  of the ingot su r f ace ,  
and so on. 

In the i te ra t ion  p r o c e s s  which this method of solut ion of r e v e r s e  and inve r se  p r o b l e m s  involves ,  a 
thorough ana lys i s  of r e s u l t s  of each i t e ra t ion ,  c om pa r i s on  of obtained data with the i r  pos s ib l e  l imi t  va lues ,  
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cons ide ra t ion  of the p r o p e r t i e s  of cu rves  r e p r e s e n t i ng  the va r i a t i on  of unknown magni tudes ,  e tc . ,  a re  ob-  
v ious ly  impor tan t .  

The r e s u l t s  of solut ion of the r e v e r s e  p r o b l e m  - de t e rmina t ion  of the coeff ic ient  of heat  t r a n s f e r  in the 
the gap - a re  shown in Fig .  2. The compar i s on  of data de r ived  by e l e c t r i c a l  s imula t ion  with those obtained 
in e x p e r i m e n t s  on a 12-ton ingot [7] shows a ve ry  s a t i s f a c t o r y  qual i ta t ive  and quant i ta t ive  c o r r e l a t i o n .  

The dependence of Lsh on t e m p e r a t u r e  is shown in Fig .  3. 

It became c l e a r  that the law of r e l e a s e  of Lsh does not only depend on t e m p e r a t u r e ,  but a l so  on the 
pos i t ion  of the front of the p h a s e s .  The dependence of the mean Lsh  on t e m p e r a t u r e  is a l so  shown in Fig .  3, 
while F ig .  4 shows the dependence of total  L, as  defined in [7], on the pos i t ion  of the two-phase  zone. 

It should be noted that  in tegra t ion  with r e s p e c t  to T along curves  1, 2, and 3 y ie lds  l ike va lues  of L, 
and along curves  4 and 5 it y ie lds  va lues  which a r e  lower  than those obtained along curves  1, 2, and 3. 
This  shows that the quanti ty of heat  r e l e a s e d  in the two-phase  zone d imin i shes  with d iminishing d i s tance  
f rom the ingot cen te r .  

This may be expla ined by the sinking of the sol id  phase  f rom h igher  l a y e r s ,  i . e . ,  in a given sec t ion  
the quantity of the l iquid phase  dur ing so l id i f ica t ion  d imin i shes  not only owing to so l id i f i ca t ion  but, a l so ,  
because  of an intake of so l id  phase  f rom upper  l a y e r s  - in o ther  words ,  owing to c r y s t a l l i z a t i o n  of upper  
l a y e r s  and sinking f rom upper  l a y e r s ,  and not f rom the c r y s t a l l i z a t i o n  of l iquid meta l  in that sec t ion.  

Hence in solving d i r e c t  p r o b l e m s  it is n e c e s s a r y  to use  curves  s i m i l a r  to those in Fig .  3, where  the 
d e s c r i b e d  effect  is taken into account .  

If an actual  heat  p r o b l e m  were  one -d imens iona l ,  the pa t t e rn  of cu rves  4 and 5 (see Fig .  3) would be 
the same  as  that  of cu rves  1, 2, and 3, and it would appea r  that L would have remained  unchanged during 
so l id i f ica t ion .  

Hence a suff icient  jus t i f i ca t ion  for  t r ea t ing  this p r o b l e m  as one-d imens iona l  is  given not only by 
the sma l l  t e m p e r a t u r e  g rad i en t s  in the v e r t i c a l  d i r ec t ion  but, a l so ,  by the law Lsh(T,  x) which takes  into 
account  the va r i a t i on  of L in the motion of the two-phase  zone. 

A check solut ion of a d i r e c t  two-d imens iona l  p r o b l e m  for va lues  of Lsh  quoted above and a c o m p a r i -  
son of expe r imen t a l  da ta  with those of e l e c t r i c a l  analog computat ion conf i rm this a s sumpt ion .  

The dependence of k m on T obtained in the solut ion of an inverse  p r o b l e m  is given in Table 1. It wil l  
be seen  that in the in te rva l  of 923-973~2 k m  changes abrup t ly .  This can be expla ined  by changes in the 
s t r u c t u r e  of the g r ay  i ron at  these  t e m p e r a t u r e s .  The pa t t e rn  of va r i a t i on  of k m  in the 293-873~ range con-  
f o r m s  to publ ished data  on the va r i a t i on  of k of pig  i rons  with t e m p e r a t u r e .  

A check has shown the n e c e s s i t y  of taking km(T ) into account only when the t e m p e r a t u r e  f ie ld of the 
mold i t se l f  is  to be de t e rmined  with suff icient  a c c u r a c y .  In inves t iga t ions  of the t e m p e r a t u r e  f ie ld of an 
ingot and for  de t e rmin ing  the pa t t e rn  of motion of the two-phase  zone k m can be taken at i ts mean  value 
given by the re la t ionsh ip  

T2 
5 ~m(T)dT 

~'m av = r ,  (13) 
T~'-- T1 

The mean  in tegra l  k m a  v can be de r ived  f rom the tabulated data .  

Curves  showing the dependence of the effect ive coeff ic ient  of t he rma l  conduct ivi ty  in the l iquid phase  
on the pos i t ion  of the two-phase  zone, obtained in the course  of solving an inverse  p r o b l e m ,  a r e  given in 
F ig .  4. It wil l  be noted that a l l  cu rves  (only a few of the obtained curves  a r e  shown in Fig .  4) have a c h a r a c -  
t e r i s t i c  max imum app rox ima te ly  midway between the l iquidus line and the ingot cen te r  l ine .  The curve  of 

TABLE i. The Dependence of the k of the Mold Material 

on Temperature 

T, ~ 293 I 373 I 473 573 672 773 873 953 1023 1073 

i 

I [ 

},m 53,6 52,5 ] 51,5 50,5 49 48 46,5 45,5 34 

i 

24,5 
l 
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maximum k l has a charac te r i s t ic  minimum, i.e., k l f i r s t  increases  and then dec reases  with the translat ion 
of the two-phase zone. 

These peculiar i t ies  of the variat ion in h /may  be explained by convection in the liquid phase,  result ing 
f rom the charac ter i s t ic  tempera ture  drop across  that phase and by the t ranslat ion of this drop during sol i -  
dification of the ingot. 

Thus, the e lectr ical  model - the R-gr id  - used in conjunction with the method proposed by Libmann 
[2] makes possible the solution of direct ,  r eve r se ,  and inverse problems of solidification (melting) with 
inner  heat re lease  either at constant tempera ture  or  in a range of t empera tu res .  Solutions of r eve r se  and 
inverse problems provide fairly accurate  means for selecting optimum conditions for casting and for de-  
signing molds.  

k 
c 

P 
w 

Cv 
o~ 

h 
R~, R w 
K 
RN 
I 

N O T A  T I O N  

is the coefficient of thermal  conductivity; 
is the specific heat; 
is the density; 
is the volumetr ic  specific power of internal heat sources ;  
is the volumetr ic  specific heat (cp); 
is the hea t - t r ans fe r  coefficient;  
is the time interval;  
~s a space interval;  
are res i s tances  of the R-gr id  simulating, respect ively ,  heat capacit ies and w; 
is the conversion factor  f rom temperature  to voltage; 
is the convers ion factor  f rom thermal  to e lec t r ic  res i s tance ;  
is the e lec t r ic  cur ren t .  

S u b s c r i  

em 
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sh 
c r  
sol 
liq 
sl 
av 

p t s  

denotes 
denotes 
denotes 
denotes 
denotes 
denote s 
denotes 
denotes 
denotes 
denotes 
denotes 

external  medium; 
mold; 
solid phase;  
liquid phase;  
gap ; 
spectral  heat of solidification; 
crysta l l izat ion;  
solidus ; 
liquidus ; 
solid liquid (two-phase) ; 
mean (average). 
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